Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Isotopic analysis of phosphate oxygen from bones and teeth (18Op/16Op, δ18Op) is a common tool used to investigate modern and ancient ecosystems and their climate. However, existing methods have expanded to use pretreatments for organic removal, require large sample sizes, or require extended precipitation timing. All together, these factors could affect accuracy and precision of δ18Op measurement by promoting the formation of oxygen-bearing or nitrogen-rich contaminants. However, the nature and occurrence of contamination are not fully explored. Here we sought to develop a method of silver phosphate precipitation that tests the effect of different sample treatments and reduced sample sizes while preserving sample isotopic composition. Our protocol (SPORA) precipitates Ag3PO4 crystals from ∼1.5 mg of starting material while purifying phosphate from contaminants, like nitrogen or carbonate. Isolation and purification of phosphate are achieved with an anion exchange resin, followed by precipitation of silver phosphate using an updated silver ammine solution that targets small amounts of phosphate in solution. We used a variety of phosphate oxygen reference materials and biogenic apatite materials, such as modern and fossil specimens with varying collagen content, to test the SPORA protocol and its effects on the resultant phosphate oxygen isotopic composition. Results were then compared to those from another published silver phosphate precipitation method (i.e., Rapid University of Chicago Dilute, Rapid UC). Overall, δ18Op values of standards and biogenic apatites were similar between protocols (R2 = 0.99, p << 0.05). In addition to isotope composition comparisons, UV–Vis spectroscopy and Fourier Transform Infrared (FTIR) analyses discerned phosphate recovery and material composition of crystals precipitated via different protocols, respectively. We found that the resin i) may retain ∼10% of phosphate with no isotopic effects and ii) the SPORA protocol produces Ag3PO4 with more accurate δ18Op measurements by preventing the formation of contaminant oxygen phases, silver oxide (Ag2O) and silver carbonate (Ag2CO3), that confound the phosphate oxygen isotope composition. The SPORA Ag3PO4 precipitation procedure overcomes analytical limitations such as sample size and collagen contamination, conditions that other procedures for δ18Op analysis cannot address simultaneously. The SPORA protocol can be used on a large array of bioapatite materials for paleoecological, paleoclimatic, and archeological applications, while reducing the required sample size and ensuring pure Ag3PO4 for isotopic analysis.more » « less
-
Abstract Eocene climate cooling, driven by the fallingpCO2and tectonic changes in the Southern Ocean, impacted marine ecosystems. Sharks in high‐latitude oceans, sensitive to these changes, offer insights into both environmental shifts and biological responses, yet few paleoecological studies exist. The Middle‐to‐Late Eocene units on Seymour Island, Antarctica, provide a rich, diverse fossil record, including sharks. We analyzed the oxygen isotope composition of phosphate from shark tooth bioapatite (δ18Op) and compared our results to co‐occurring bivalves and predictions from an isotope‐enabled global climate model to investigate habitat use and environmental conditions. Bulk δ18Opvalues (mean 22.0 ± 1.3‰) show no significant changes through the Eocene. Furthermore, the variation in bulk δ18Opvalues often exceeds that in simulated seasonal and regional values. Pelagic and benthic sharks exhibit similar δ18Opvalues across units but are offset relative to bivalve and modeled values. Some taxa suggest movements into warmer or more brackish waters (e.g.,Striatolamia,Carcharias) or deeper, colder waters (e.g.,Pristiophorus). Taxa likeRajaandSqualusdisplay no shift, tracking local conditions in Seymour Island. The lack of difference in δ18Opvalues between pelagic and benthic sharks in the Late Eocene could suggest a poorly stratified water column, inconsistent with a fully opened Drake Passage. Our findings demonstrate that shark tooth bioapatite tracks the preferred habitat conditions for individual taxa rather than recording environmental conditions where they are found. A lack of secular variation in δ18Opvalues says more about species ecology than the absence of regional or global environmental changes.more » « less
An official website of the United States government
